## Problem 4

Let $\left\{P_{n}\right\}$ be a sequence of points determined as in the figure. Thus $\left|A P_{1}\right|=1,\left|P_{n} P_{n+1}\right|=2^{n-1}$, and angle $A P_{n} P_{n+1}$ is a right angle. Find $\lim _{n \rightarrow \infty} \angle P_{n} A P_{n+1}$.


FIGURE FOR PROBLEM 4

## Solution

The strategy for this problem is to assign a variable for the angle in question, write an equation for it in terms of $n$, and then to take the limit of it as $n$ goes to infinity. Let $\theta_{n}=\angle P_{n} A P_{n+1}$ and let $h_{n+1}$ be the hypotenuse of the triangle $\theta_{n}$ is in. These variables are illustrated below in the figures.


Figure 1: Problem figure with the hypotenuses and angles labeled.


Figure 2: The $n$th triangle.
All these triangles have right angles, so trigonometric functions and the Pythagorean theorem can be applied. We'll use this equation to calculate $\theta_{n}$.

$$
\begin{equation*}
\sin \theta_{n}=\frac{2^{n}}{h_{n+1}} \tag{1}
\end{equation*}
$$

The objective now is to find an expression for $h_{n+1}$, the $(n+1)$ th hypotenuse, in terms of $n$.

We'll start with finding $h_{1}$, then $h_{2}$, and try to find a pattern.

$$
\begin{aligned}
h_{1}^{2}=1^{1}+1^{2}=2 & \rightarrow h_{1}=\sqrt{2} \\
h_{2}^{2}=h_{1}^{2}+2^{2}=6 & \rightarrow h_{2}=\sqrt{6}=\sqrt{2+4} \\
h_{3}^{2}=h_{2}^{2}+4^{2}=22 & \rightarrow h_{3}=\sqrt{22}=\sqrt{2+4+4^{2}} \\
h_{4}^{2}=h_{3}^{2}+8^{2}=86 & \rightarrow h_{4}=\sqrt{86}=\sqrt{2+4+4^{2}+4^{3}} \\
h_{5}^{2}=h_{4}^{2}+16^{2}=342 & \rightarrow h_{5}=\sqrt{342}=\sqrt{2+4+4^{2}+4^{3}+4^{4}}
\end{aligned}
$$

The general formula for the $(n+1)$ th hypotenuse is

$$
h_{n+1}=\sqrt{2+\sum_{k=1}^{n} 4^{k}} .
$$

The formula for the first $n$ terms of a geometric series is the following.

$$
\sum_{k=1}^{n} a_{1} r^{k-1}=a_{1} \cdot \frac{1-r^{n}}{1-r}
$$

This means that

$$
\sum_{k=1}^{n} 4^{k}=\sum_{k=1}^{n} 4 \cdot 4^{k-1}=4 \cdot \frac{1-4^{n}}{1-4}=\frac{4}{3}\left(4^{n}-1\right) .
$$

Thus, equation (1) becomes

$$
\begin{aligned}
\sin \theta_{n} & =\frac{2^{n}}{\sqrt{2+\frac{4}{3}\left(4^{n}-1\right)}} \\
& =\frac{1}{\frac{1}{2^{n}} \sqrt{2+\frac{4}{3}\left(4^{n}-1\right)}} \\
& =\frac{1}{\sqrt{\frac{1}{2^{2 n}}\left[2+\frac{4}{3}\left(4^{n}-1\right)\right]}} \\
& =\frac{1}{\sqrt{\frac{2}{2^{2 n}}+\frac{4}{3}\left(1-\frac{1}{2^{2 n}}\right)}} .
\end{aligned}
$$

Finally, take the limit of both sides as $n$ goes to infinity.

$$
\lim _{n \rightarrow \infty} \sin \theta_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{\frac{2}{2^{2 n}}+\frac{4}{3}\left(1-\frac{1}{2^{2 n}}\right)}}=\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{2}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \theta_{n}=\frac{\pi}{3} .
$$

